Extensions 1→N→G→Q→1 with N=C6 and Q=C23.D5

Direct product G=N×Q with N=C6 and Q=C23.D5
dρLabelID
C6×C23.D5240C6xC2^3.D5480,745

Semidirect products G=N:Q with N=C6 and Q=C23.D5
extensionφ:Q→Aut NdρLabelID
C61(C23.D5) = C2×D6⋊Dic5φ: C23.D5/C2×Dic5C2 ⊆ Aut C6240C6:1(C2^3.D5)480,614
C62(C23.D5) = C2×C30.38D4φ: C23.D5/C22×C10C2 ⊆ Aut C6240C6:2(C2^3.D5)480,917

Non-split extensions G=N.Q with N=C6 and Q=C23.D5
extensionφ:Q→Aut NdρLabelID
C6.1(C23.D5) = C60.94D4φ: C23.D5/C2×Dic5C2 ⊆ Aut C6240C6.1(C2^3.D5)480,32
C6.2(C23.D5) = C20.5D12φ: C23.D5/C2×Dic5C2 ⊆ Aut C61204C6.2(C2^3.D5)480,35
C6.3(C23.D5) = C60.54D4φ: C23.D5/C2×Dic5C2 ⊆ Aut C62404C6.3(C2^3.D5)480,38
C6.4(C23.D5) = D12⋊Dic5φ: C23.D5/C2×Dic5C2 ⊆ Aut C6240C6.4(C2^3.D5)480,42
C6.5(C23.D5) = C10.D24φ: C23.D5/C2×Dic5C2 ⊆ Aut C6240C6.5(C2^3.D5)480,43
C6.6(C23.D5) = Dic6⋊Dic5φ: C23.D5/C2×Dic5C2 ⊆ Aut C6480C6.6(C2^3.D5)480,48
C6.7(C23.D5) = C10.Dic12φ: C23.D5/C2×Dic5C2 ⊆ Aut C6480C6.7(C2^3.D5)480,49
C6.8(C23.D5) = C60.98D4φ: C23.D5/C2×Dic5C2 ⊆ Aut C61204C6.8(C2^3.D5)480,54
C6.9(C23.D5) = C60.99D4φ: C23.D5/C2×Dic5C2 ⊆ Aut C61204C6.9(C2^3.D5)480,55
C6.10(C23.D5) = C30.24C42φ: C23.D5/C2×Dic5C2 ⊆ Aut C6480C6.10(C2^3.D5)480,70
C6.11(C23.D5) = C158(C23⋊C4)φ: C23.D5/C2×Dic5C2 ⊆ Aut C61204C6.11(C2^3.D5)480,72
C6.12(C23.D5) = C60.212D4φ: C23.D5/C22×C10C2 ⊆ Aut C6240C6.12(C2^3.D5)480,190
C6.13(C23.D5) = C30.29C42φ: C23.D5/C22×C10C2 ⊆ Aut C6480C6.13(C2^3.D5)480,191
C6.14(C23.D5) = D4⋊Dic15φ: C23.D5/C22×C10C2 ⊆ Aut C6240C6.14(C2^3.D5)480,192
C6.15(C23.D5) = C60.8D4φ: C23.D5/C22×C10C2 ⊆ Aut C61204C6.15(C2^3.D5)480,193
C6.16(C23.D5) = C23.7D30φ: C23.D5/C22×C10C2 ⊆ Aut C61204C6.16(C2^3.D5)480,194
C6.17(C23.D5) = Q82Dic15φ: C23.D5/C22×C10C2 ⊆ Aut C6480C6.17(C2^3.D5)480,195
C6.18(C23.D5) = C60.10D4φ: C23.D5/C22×C10C2 ⊆ Aut C62404C6.18(C2^3.D5)480,196
C6.19(C23.D5) = Q83Dic15φ: C23.D5/C22×C10C2 ⊆ Aut C61204C6.19(C2^3.D5)480,197
C6.20(C23.D5) = C3×C20.55D4central extension (φ=1)240C6.20(C2^3.D5)480,108
C6.21(C23.D5) = C3×C10.10C42central extension (φ=1)480C6.21(C2^3.D5)480,109
C6.22(C23.D5) = C3×D4⋊Dic5central extension (φ=1)240C6.22(C2^3.D5)480,110
C6.23(C23.D5) = C3×C20.D4central extension (φ=1)1204C6.23(C2^3.D5)480,111
C6.24(C23.D5) = C3×C23⋊Dic5central extension (φ=1)1204C6.24(C2^3.D5)480,112
C6.25(C23.D5) = C3×Q8⋊Dic5central extension (φ=1)480C6.25(C2^3.D5)480,113
C6.26(C23.D5) = C3×C20.10D4central extension (φ=1)2404C6.26(C2^3.D5)480,114
C6.27(C23.D5) = C3×D42Dic5central extension (φ=1)1204C6.27(C2^3.D5)480,115

׿
×
𝔽